3,315 research outputs found

    A paradox in community detection

    Full text link
    Recent research has shown that virtually all algorithms aimed at the identification of communities in networks are affected by the same main limitation: the impossibility to detect communities, even when these are well-defined, if the average value of the difference between internal and external node degrees does not exceed a strictly positive value, in literature known as detectability threshold. Here, we counterintuitively show that the value of this threshold is inversely proportional to the intrinsic quality of communities: the detection of well-defined modules is thus more difficult than the identification of ill-defined communities.Comment: 5 pages, 3 figure

    Reachability problems for PAMs

    Get PDF
    Piecewise affine maps (PAMs) are frequently used as a reference model to show the openness of the reachability questions in other systems. The reachability problem for one-dimentional PAM is still open even if we define it with only two intervals. As the main contribution of this paper we introduce new techniques for solving reachability problems based on p-adic norms and weights as well as showing decidability for two classes of maps. Then we show the connections between topological properties for PAM's orbits, reachability problems and representation of numbers in a rational base system. Finally we show a particular instance where the uniform distribution of the original orbit may not remain uniform or even dense after making regular shifts and taking a fractional part in that sequence.Comment: 16 page

    Mechanical Unfolding of a Simple Model Protein Goes Beyond the Reach of One-Dimensional Descriptions

    Get PDF
    We study the mechanical unfolding of a simple model protein. The Langevin dynamics results are analyzed using Markov-model methods which allow to describe completely the configurational space of the system. Using transition path theory we also provide a quantitative description of the unfolding pathways followed by the system. Our study shows a complex dynamical scenario. In particular, we see that the usual one-dimensional picture: free-energy vs end-to-end distance representation, gives a misleading description of the process. Unfolding can occur following different pathways and configurations which seem to play a central role in one-dimensional pictures are not the intermediate states of the unfolding dynamics.Comment: 10 pages, 6 figure

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    Restriction on the energy and luminosity of e+e- storage rings due to beamstrahlung

    Full text link
    The role of beamstrahlung in high-energy e+e- storage-ring colliders (SRCs) is examined. Particle loss due to the emission of single energetic beamstrahlung photons is shown to impose a fundamental limit on SRC luminosities at energies 2E_0 >~ 140 GeV for head-on collisions and 2E_0 >~ 40 GeV for crab-waist collisions. With beamstrahlung taken into account, we explore the viability of SRCs in the E_0=240-500 GeV range, which is of interest in the precision study of the Higgs boson. At 2E_0=240 GeV, SRCs are found to be competitive with linear colliders; however, at 2E_0=400-500 GeV, the attainable SRC luminosity would be a factor 15-25 smaller than desired.Comment: Latex, 5 pages. v2 differs only by minor changes is abstract and introduction, one reference is added. v3 corresponds to the paper published in PR

    The Identity Correspondence Problem and its Applications

    Get PDF
    In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post's Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: "Is it decidable for a finitely generated semigroup S of square integral matrices whether or not the identity matrix belongs to S?". We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several question for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.Comment: We have made some proofs clearer and fixed an important typo from the published journal version of this article, see footnote 3 on page 1

    Energy versus information based estimations of dissipation using a pair of magnetic colloidal particles

    Get PDF
    Using the framework of stochastic thermodynamics, we present an experimental study of a doublet of magnetic colloidal particles which is manipulated by a time-dependent magnetic field. Due to hydrodynamic interactions, each bead experiences a state-dependent friction, which we characterize using a hydrodynamic model. In this work, we compare two estimates of the dissipation in this system: the first one is energy based since it relies on the measured interaction potential, while the second one is information based since it uses only the information content of the trajectories. While the latter only offers a lower bound of the former, we find it to be simple to implement and of general applicability to more complex systems.Comment: Main text: 5 pages, 4 figures. Supplementary material: 5 pages, 5 figure

    Three-photon detachment of electrons from the fluorine negative ion

    Get PDF
    Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory (Gribakin and Kuchiev 1997 {Phys. Rev. A} {\bf 55} 3760) this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.Comment: 10 pages, two figures, Latex, IOP styl

    The Stellar Composition of the Star Formation Region CMa R1. II. Spectroscopic and Photometric Observations of 9 Young Stars

    Full text link
    We present new high and low resolution spectroscopic and photometric data of nine members of the young association CMa R1. All the stars have circumstellar dust at some distance as could be expected from their association with reflection nebulosity. Four stars (HD 52721, HD 53367, LkHalpha 220 and LkHalpha 218) show Halpha emission and we argue that they are Herbig Be stars with discs. Our photometric and spectroscopic observations on these stars reveal new characteristics of their variability. We present first interpretations of the variability of HD 52721, HD 53367 and the two LkHalpha stars in terms of a partially eclipsing binary, a magnetic activity cycle and circumstellar dust variations, respectively. The remaining five stars show no clear indications of Halpha emission in their spectra, although their spectral types and ages are comparable with those of HD 52721 and HD 53367. This indicates that the presence of a disc around a star in CMa R1 may depend on the environment of the star. In particular we find that all Halpha emission stars are located at or outside the arc-shaped border of the H II region, which suggests that the stars inside the arc have lost their discs through evaporation by UV photons from nearby O stars, or from the nearby (< 25 pc) supernova, about 1 Myr ago.Comment: 17 pages, 13 figures, accepted by MNRA

    A New Technique for Determining the Properties of a Narrow ss-channel Resonance at a Muon Collider

    Get PDF
    We explore an alternative to the usual procedure of scanning for determining the properties of a narrow ss-channel resonance. By varying the beam energy resolution while sitting on the resonance peak, the width and branching ratios of the resonance can be determined. The statistical accuracy achieved is superior to that of the usual scan procedure in the case of a light SM-like Higgs boson with \mh>130\gev or for the lightest pseudogoldstone boson of a strong electroweak breaking model if \mpzero>150\gev.Comment: 4 pages, 1 figur
    corecore